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field can only enhance the level of service now pro- 
vided to the crystallographic community. It is likely 
that fresh financial and legal problems will emerge 
as new distributional media are utilized, but con- 
tinued vigilance by the oversight mechanism set in 
place since the Twelfth General Assembly may be 
expected to maintain the present robust state of IUCr 
crystallographic publishing and financial solvency. 

It is a pleasure to thank C. E. Bugg, M. H. 
Dacombe, Th. Hahn, J. H. Robertson, J. R. Rumble 
(National Bureau of Standards), J. T. Scott (American 
Institute of Physics), T. Selover (American Institute 
of Chemical Engineers), and D. W. Weisgerber 
(Chemical Abstracts Service) for discerning com- 
ments on a draft version of this paper. 
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Abstract 

An example is given of phase extension for a small 
protein, avian pancreatic polypeptide, by the use of 
the Sayre-equation tangent formula (SETF). Initial 
data were the phase estimates of 129 reflexions with 
large values of lE within the 3 A resolution sphere. 
The mean error of these phases, estimated by a combi- 
nation of isomorphous replacement and anomalous 
scattering, was 26.5 °. Random values were then given 
to 1371 other phases out to 1 A resolution and 
refinement was carried out with SETF. In 20 trials, 
11 gave mean phase errors less than 34 ° for all 1500 
reflexions with the best set having a mean phase error 
of 31-9 ° . Maps computed with these phases showed 
the general form of the molecule. 
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Introduction 

Much thought is being given to the application of 
direct methods to protein-structure problems. The 
most successful ideas so far have involved some com- 
bination of information from physical methods, such 
as the heavy-atom method, isomorphous replacement 
or anomalous scattering, with direct-methods theory 
(e.g. Hauptman, 1982; Karle, 1984, 1986; Fan Hai-fu, 
1983). However, there is a tendency to illustrate ideas 
with ideal calculated data for known structures and, 
until recently, the only unknown protein structures 
to have been solved using direct methods have in- 
volved starting from heavy-atom positions found by 
using MULTAN (Wilson, 1978). However, there is 
an interesting example of the application of 
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anomalous-scattering data with direct methods on the 
solution of Cd, Zn metallothionein (Furey, Robbins, 
Clancy, Winge, Wang & Stout, 1986). 

A critical step in many protein structure solutions 
is that of phase extension from phases estimated at 
low resolution from physical methods-very often 
with very low accuracy (root mean square error typi- 
cally ---45°). A large number of procedures for phase 
extension and refinement have been reported. At one 
extreme there are theoretical reciprocal-space direct- 
methods approaches such as that of Tsoucaris (1970) 
using the maximum-determinant method and 
Bricogne (1984) using the ideas of maximum entropy. 
There are also real-space methods of density 
modification, the best known at present being that of 
Wang (1984) who uses density flattening outside an 
envelope identified as containing the protein 
molecule. At the other extreme there are density- 
fitting methods where a model is fitted to the low- 
resolution density on a trial-and-error basis (Agarwal 
& Isaacs, 1977). 

An early approach of the direct-methods variety 
was that of Sayre (1972, 1974) who extended and 
refined phases on the basis that true phases should 
satisfy a system of Sayre equations. The method was 
a brute-force one requiring prodigious use of com- 
puter time although the effort required might seem 
more reasonable with the present availability of 
supercomputers. 

The characteristic of all these methods is that they 
are normally of the single-solution variety. From the 
starting point an objective procedure is followed 
which leads to the final result. If that result is unsatis- 
factory then one might, in an ad hoc way, modify the 
procedure to get a different answer, but rarely does 
this seem to be done in practice. Our experience with 
direct methods applied to small structures suggests 
that single-solution methods are unlikely to be suc- 
cessful in general. The strength of modern direct 
methods resides in their multi-solution nature, in that 
for difficult structures one may simply increase the 
number of trials to make the probability of netting 
the correct solution reasonably large. 

An illustration of this is the fragment development 
procedure of Yao Jia-xing (1983). A time-honoured 
and successful way of developing a complete structure 
from a fragment is that given by Karle (1968). The 
fragment from an E map is used to generate reliable 
phase estimates for a relatively small number of 
reflexions, these are inserted into a cyclic process of 
phase development using the tangent formula, and 
the newly estimated phases are used to compute a 
new E map. Starting with a small fragment the pattern 
is that a somewhat larger fragment is obtained, which 
can then be used as a new starting point; repeating 
this process eventually gives the complete structure. 

By contrast Yao Jia-xing's (1983) approach is to 
take the same set of reliable phase estimates from the 

initial fragment and to assign random phase values 
to all other reflexions whose phases are required. In 
a small number of trials the complete structure is 
usually obtained in one stage. More importantly, 
examples are found where the Karle procedure is 
ineffective but the Yao Jia-xing (1983) method will 
work - albeit not in one stage. 

Fragment development is a process which builds 
from partial to complete information and this also 
applies to phase extension and refinement. Based on 
this kind of background and experience we have made 
trials of phase extension using a multi-solution direct- 
methods procedure. 

Phase extension by SA YTAN 

Debaerdemaeker, Tate & Woolfson (1988) have 
reported the development of the SAY 'FAN pro- 
cedure, based on the Sayre-equation tangent formula 
(SETF), which is incorporated in MULTAN87 .  The 
SETF is a phase developing formula giving phases 
tending to satisfy a set of Sayre equations. In view 
of the work by Sayre (1972, 1974) it seemed to be 
sensible to try the SETF to develop phases; the SETF 
is easy and fast to apply and it is possible to make 
many trials. 

The test structure we used was aPP (avian pan- 
creatic polypeptide) solved by Glover, Haneef, Pitts, 
Wood, Moss, Tickle & Blundell (1983) to 1/~ resol- 
ution. The details of the crystal are: 

asymmetric unit contents: 
36 amino-acid peptide + Zn + 80H20; 

space group C2, Z = 4; 
a =34.18, b =32.92, c = 28.44 A, fl = 105.30 °. 

It is a favourable case to take since, although there 
are 382 non-hydrogen atoms in the asymmetric unit, 
the data extend out to a resolution of about 1 A,. In 
fact phase extension from 2.04 to 1.37/~ was carried 
out for this structure (Tickle, 1981) using the tangent 
formula with a weighting scheme suggested by Hull 
& Irwin (1978). Starting with phases from the solved 
structure at 2.04 A,, obtained by isomorphous replace- 
ment and anomalous scattering measurements from 
an HgC12 derivative, Tickle (1981) used a controlled 
application of the weighted tangent formula and, in 
his paper, presented weights for the phase estimates 
in the region of phase extension but no information 
about phase errors. 

For our part we have started with phase information 
at much lower resolution (3/~), extended to the 
observed limit of resolution (1 ]k) and give mean 
phase errors ([(A~[)) for our various trials. The steps 
in the process, which is quite automatic, are as 
follows: 

(1) Calculate normalized structure factors using 
the Wilson-plot method. 
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Table 1. Figures o f  merit and mean phase error for 20 
trials o f  phase extension for aPP 

Set ABSFOM P S 1 0  RESID CFOM ERROR 
1 1-341 2.823 35.50 0.966 32.1 
2 1.070 4.161 31.27 1.995 32.6 
3 0.947 4.645 29-07 2.546 32.3 
4 0.788 5.405 30.01 2-200 32.9 
5 0.880 4.881 28.51 2.671 31.9 
6 1.365 2.398 36-79 0.638 41.8 
7 1.054 2.926 37-77 0.261 84.0 
8 0.888 4.825 28.42 2.700 33.0 
9 -- Set 8 

10 1.087 2.431 35.54 0.918 88.1 
11 1-374 2.258 36.37 0.766 33.7 
12 0.951 4.584 28.80 2.624 32.4 
13 0-598 2-141 32.07 1.783 78.1 
14 1.131 3.904 32.17 1.774 36.6 
15 1.111 4.007 32-13 1.774 32.6 
16 0.875 4-948 28-75 2.598 36.0 
17 0.846 5.026 28.77 2.581 32.1 
18 = Set 16 
19 1.432 2.355 37.29 0.521 32-9 
20 1-150 3.903 33.38 1.442 50.5 

(2) Select 1500 of the largest (IEI-> 1.548) and 100 
smallest E values from the 16 538 reflexions within 
1 A resolution data. 

(3) Set up a ~'.2 list of  64 237 phase relat ionships 
l inking the large E values and 12 862 contributors to 
the r ight-hand side of  Sayre's equation for the small  
E's .  

(4) For the 129 large-E reflexions within 3 A reso- 
lution assign the phases which were found in the 
original solution of the structure from a combina t ion  
of  single i somorphous  replacement  and anomalous  
scattering. The mean  phase error of  these assignments  
is 26.5 ° . 

(5) To the 1371 other large-E-value reflexions 
assign ' r andom'  phases generated by a magic-integer 
algori thm (Main,  1978). 

(6) Set weights W = 1 for the 129 'known '  phases,  
W =  0.25 for the 1371 random phases. 

(7) Refine phases by the SETF keeping the 129 
known phases fixed. A new phase estimate is accepted 
when its calculated weight is greater than a cut-off 
value which is decreased cycle-by-cycle. The cut-off 
weight is 0.8 x (0.85) n-~ where n is the cycle number .  

(8) Repeat the whole process for 20 trials. 
(9) Output  an E map  for the phase set with the 

best combined  figure of  merit  (CFOM) and also a 
list of  coordinates,  Since the structure was known it 
was also possible to determine a mean phase error 
for each of  the trials for all 1500 large-E reflexions. 

The total run took about 2 0 m i n  on a 
VAX8650/8550 cluster mainframe.  

Results 

In Table 1 the convent ional  figures of merit  and also 
the mean  phase error for each of  the trials are shown. 
There were 11 phase sets with mean  phase error less 

than 34 °. The best set, with a mean phase error of  
31.9 °, was second best in order of  CFOM.  For set 8, 
that with the highest C F O M ,  86 of  the top 100 peaks 
identified by the routine S E A R C H  were within 0.4 A 
of  a true atomic posit ion; for set 5, that with the 
lowest mean  error, the corresponding figure was 85 
atoms in the top 100 peaks - slightly worse. For struc- 
tures of  this size, however,  it is probably  better to 
look at the E-map  density rather than interpreted 
peaks. A graphical  display of the molecule superim- 
posed on a density map  gives confidence that a com- 
plete detai led structure solution would be possible 
starting from either set 8 or set 5. 

Concluding remarks 

The results with aPP are encouraging but it is too 
early to say that a routine procedure has been found 
for dealing with the solution of small p ro t e in s -  
especially as aPP is so favourable in terms of the 
quality of its data. 

We can think of  possible improvements  in our 
procedure. For one thing the number  of small  E ' s  
used for aPP was far from optimal;  Debaerdemaeker  
et al. (1988) have found that the best ratio of the 
number  of  contributors to small E 's  to the number  
of Y,2 relat ionships for large E ' s  is about 0-5 rather 
than the 0.2 we have used. Another  possible improve- 
ment is to use much  more of  the informat ion within 
the 3 A region. We selected the phase estimates for 
the 129 largest E ' s  without considering their reliabil- 
ity and ignored other available informat ion from 
smaller  (but not much  smaller) E ' s  with, perhaps,  
more reliable phase estimates. 

Finally,  in comput ing the E map we could have 
used more than 1500 terms by using the phase esti- 
mates for the 1500 to estimate phases for the extra 
4678 reflexions down to ]E I -  1. 

Clearly there is far to go before any substantial  
success can be c l a i m e d - b u t  the initial indicat ions 
are good and there is much  still to try. 

We wish to express our gratitude to the Academia  
Sinica and the Royal Society which support  the col- 
laboration between the Institute of  Physics, Beijing 
and the Universi ty of  York. We also thank the Science 
and Engineering Research Counci l  for its support  of  
direct-methods work at York without which little 
would be done. 
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Abstract 

The effect of scatterers, located in variable special 
positions, on the probability density function of the 
magnitude of the normalized structure factor has been 
investigated. Exact characteristic functions have been 
obtained for all the statistically different variable 
special positions in triclinic, monoclinic and ortho- 
rhombic space groups except in Fdd2 and in the 
space groups based on the point group 222, and the 
probability density functions have been evaluated 
from their Fourier or Fourier-Bessel series 
expansions. It is seen that the effect of heavy scat- 
terers, located in the special positions investigated, 
is very marked and should be accounted for in cases 
of space-group ambiguities. 

Introduction 

The effects of the presence of atoms in special posi- 
tions have been investigated in earlier work on 
intensity statistics (Karle & Hauptman, 1953; 
Hauptman & Karle, 1953; Collin, 1955; Hargreaves, 
1956; Sim, 1958; Foster & Hargreaves, 1963; Ilyukhin 
& Nikitin, 1963), but no exact studies of these effects 
on the probability density function (p.d.f.) of the 
structure factor have so far been attempted. One of 
the reasons for avoiding the study of special positions 
is their very large number in all the 230 space groups, 
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and consequent apparent difficulties in arriving at 
tractable and reasonably concise formulae. Since, 
however, the qualitative effects of (heavy) scatterers 
in special positions on intensity statistics may well 
be of considerable significance in the determination 
of space-group symmetry in cases of ambiguities, a 
study of such effects was thought to be of interest. 

The techniques used in this paper are similar to 
those we employed in our previous studies of intensity 
statistics, based on exact solutions of random-walk 
models (e.g. Shmueli, Weiss, Kiefer & Wilson, 1984; 
Shmueli & Weiss, 1987). Only low-symmetry space 
groups are treated, and it is seen that the number of 
different expressions that need to be developed is 
much smaller than the formal number of crystal- 
lographically different Wyckoff positions in the space 
groups investigated. The present treatment is confined 
to the variable special positions (i.e. lines and planes), 
since the contributions of scatterers located in fixed 
special positions can be calculated and subsequently 
subtracted from the (scaled) intensity; examples of 
the latter process can be found in the works of Collin 
(1955), Sim (1958), Srinivasan & Parthasarathy (1976) 
and Pradhan, Ghosh & Nigam (1985). The results 
presented in this paper encompass all the variable 
special positions in monoclinic and orthorhombic 
space groups, except those in space groups based on 
the point group 222 and in the space group Fdd2. 
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